How to support multiple screens using

android?
Synopsis

Zealand Institute

of Business and Technology

Author: Michal Derdak
Supervisor: Anders Kristian Bgrjesson
Semester: 4th

Date: 20-5-2016

Content

- Introduction 1
- Problem definition 1
- Activities 2
- Planning 2
- What is density-independent pixel (dp)? 3
- How to achieve density independence? 3
- Which types of screens are supported by Android system? 6
- How did Android changed its screen adaptability over the years? 7
- How to support multiple screens using Android? 7
- Conclusion 12
- Reflection 13
- List of references 14
Introduction

Operating system Android runs on many unequal devices, which have different
screen sizes and densities. For applications, Android system offers consistent development
environment and deals with most of the work to adapt every application’s user interface to
screen on which it is displayed. The system offers APIs that allow you to control your
application’s Ul for specific device, in order to adjust your design for different screen
arrangements - Ul for tablets may differ from Ul for handsets.

| have chosen this topic, because during my studies with Android | found tasks
related to Ul design or tasks like making good-looking application more challenging than
actual work on code behind.

Problem definition

Today’s variety of devices on market is huge. Many of those use Android system and
making good-looking application which can adapt and be displayed properly on different
screens is a huge benefit. For this problem, | came up with this set of questions, which | will
try to answer.

Main question
- How to support multiple screens using android?

Sub-questions
- What is density-independent pixel (dp)?
- How to achieve density independence?
- Which types of screens are supported by Android system?
- How did Android changed its screen adaptability over the years?

Activities

Since | have 4 weeks for deadline | will divide my work weekly for planning/gathering
information, working on main question, working on sub-questions, conclusion/reflection.

My first week, where | will try to gather as much as possible information, will contain
endless browsing on Internet and also talking to professionals from Momondo company.

Second week will be dedicated to main question. This is most important week and
precise work on this activity will lead me to answer, which will be reviewed in conclusion
week.

Third week will be about sub-questions. | will try to divide work evenly between all of
them and hopefully | will find answer to all of them.

In the fourth week | will evaluate my answers and work for all questions, summarize
them and conclude them.

Planning

For proper division of work | made planning, where | sort all activities and estimated
how much time each activity can possibly take.

e Gathering information
o Searching for information on Internet
m Estimated time - 3 days
o Trying to contact professionals
m Estimated time - 4 days
e Working on sub-questions
o Sub-question “What is density-independent pixel (dp)?”
m Estimated time - 1 day
o Sub-question “How to achieve density independence? “
m Estimated time - 3 day
o Sub-question “Which types of screens are supported by Android System?”
m Estimated time - 1 days
o Sub-question “How did Android changed its screen adaptability over the
years?”
m Estimated time - 2 days
e Working on main question
o Theoretical work
m Estimated time - 2 days
o Practical work
m Estimated time - 5 days
e Conclusion / reflection
o Write conclusion
m Estimated time - 5 days
o Write reflection
m Estimated time 2 days

Sub-questions

In my synopsis, | chose to explain sub-questions before the main question.
Sub-questions are going to be leading us to the main question and helping us with better
understanding of it.

What is density-independent pixel (dp)?

To answer this question first we need to look at what density of the screen actually is.
Screen density is a ratio of screen resolution and display size, this can be defined as dots
per inch (dpi). The bigger the dpi, the smaller each pixel is, and screen looks better (more
sharp). That means, a higher dpi screen can display more detail per inch, but this does not
necessarily correspond with a higher screen resolution.

“For example, the Galaxy Nexus (4.65” diagonal) has a 720x1280 px resolution,
while the Nexus 7 (7” diagonal) has an 800x1280 px resolution. It is a common
misconception to assume that they have about the same screen density, since their
resolutions are almost identical. However, the Galaxy Nexus has a screen density of about
316 dpi and the Nexus 7 has a screen density of 216 dpi, not even close.” Steven Byle,
Understanding Density Independence in Android,
https://www.captechconsulting.com/blogs/understanding-density-independence-in-android

This is because while they have the same resolution, they also have different screen
sizes, thus they are showing same amount of pixels but on different amount of space.

So, what is dp unit then? The density-independent pixel is equal to one physical pixel
on a 160 dpi screen (medium-density) - this is baseline. Android system scale dp units,
based on the actual density of running screen. From this we can calculate how many pixels
are equal to certain amount of density-independent pixel unit on certain screen density using
this equation: px = dp * (dpi / 160). That means, that 1 dp unit on 240 dpi screen would be
equal to 1.5 physical pixels. To ensure your application has appropriate display of your Ul on
screens with different densities, you should always use density-independent pixel units when
you are defining your application’s Ul elements.

How to achieve density independence?

In order to have best appearance for your application you should achieve “density
independence”. Without it, Ul elements in your application may look physically bigger on
low-density screens and smaller on high-density screens or there may occur any different
shortcomings . See examples 1 and 2 below.

a @ Ty 10:43 A8 g @ 10:45 A6 4 u 416

Synopsis_DP Synopsis_DP Synopsis_DP

HIGH- QW
DENSIT
Y

2.
Zi

LOW-DENSITY Zesland Insiune 'B'Eﬂ'sﬁ'ﬁ

Tealand lnstinne

Example 1. On these images of applications we can see that without supporting density
independence elements in Ul appear smaller with higher density screens. Shown on the low,
medium and high-density

] gl 8:55 [

Synopsis_DP

Synopsis_DP

Synopsis_DP

Q

HIGH-DENSITY Tetand Isthre

MEDIUM-
DENSITY

Example 2. This example shows us how application with a good support for different
densities looks like. Shown on low, medium and high-density.

In screenshots in example 1, Ul elements have dimensions defined in pixels (px).
That means, when elements are shown on low-density screen they appear large even
though they take same amount of pixels as in high-density screen, because high-density
screen has more pixels per inch (higher concentration of pixel on same physical area). In
example 2, the elements are defined in density-independent pixel (dp). As mentioned above,
the baseline for dp units is one pixel on medium-density screens. Because of this elements
in example 1 and 2 in the pictures showing medium-density have same sizes.

However using hardcoded values may not always be the best option for your
application’s layout. You can achieve density independence by using “wrap_content”.
“Wrap_content” will always adjust borders of the element to be just big enough to contain its
content (pictures, text, etc.), children elements contained within it, plus padding, but that is
not the only thing it does. “Wrap_content” will also scale your drawable file, so it does have
the same physical size on every screen. For example when you define picture which is
100x100 px this will become the baseline and for other screen densities, your drawable file
will be scaled in these ratios: Idpi - 0.75, mdpi - 1, hdpi - 1.5, xhdpi - 2, xxhdpi - 3, xxxhdpi -

4. That means when you have 100x100 px image, it will be scaled to 150x150 px when your
application will run on hdpi screen. This may cause blurriness or other shortcomings, see
example 3.

] d u 54

& Y 5:37 Synopsis_WRAPCONTENT

Zealand Institute

Synopsis_WRAPCONTENT

Vo
A

Example 3. Mdpi screen on the left, xxhdpi screen on the right. See full image sizes in
appendix

When the content of the element is larger than actual screen size “wrap_content” will
adjust element’s size to fit its parent so it cannot exceed it, this may cause funny stretching
as you can see in example 4.

[4 b 6:49] 4 u 6:50
Synopsis_WRAPCONTENT Synopsis_WRAPCONTENT

y <

Zealand Institute Zeal

of Business and Technolugy of Bus

T a

Example 4. On the left is image using “wrap_content”, on the right is image with hardcoded
dp units,

However, scaling of bitmap drawables can sometimes lead to blurriness or pixelated
bitmaps. To deal with this problem you should make sure that you provide alternative bitmap
drawables for different screen densities, which we are going to talk about in next question.

Which types of screens are supported by Android
system?

Android system started supporting different screen sizes and densities with version
1.6 (APl level 4), by providing us with a configuration qualifiers. Configuration qualifier is a
string that you can add to the resource folder in your Android project. You can provide
alternative resources to the specific folder and, thus only those resources will be used for
certain screen configuration.

To make things simple Android divided all screen sizes into set of four generalized
sizes: small, normal, large and xlarge. However, starting Android 3.2 (API level 13), these
groups were replaced by new technique for managing screen sizes based on the available
screen width.

Starting with first generation of tablets in Android 3.0 the only proper way to define
layout for them, was to put it into xlarge configuration qualifier. This brought a problem
because 7 inch tablets were in the same group as 5 inch handsets. Rather than trying to fit
and stretch layouts, Android developers decided to come up with a new technique. Instead
of generalizing screens into groups, why wouldn’t you be able to restrict your layout, so it
can be used only on certain devices. This is done by specifying width and/or height available
for your layout in dp units. For example if your layout is set to 600dp screens, that range
becomes minimum screen size your layout can be displayed on.

Old configuration qualifiers for different screen configurations: small, normal (this is the
baseline size), large, xlarge

New configuration qualifiers for different screen configurations.
e smallestWidth - sw<N>dp

o Examples: sw600dp, sw720dp.

o If you are planning to run your application layout only on screens with 600dp
screen width or bigger, then you should use this qualifier to create the layout
resources, res/layout-sw600dp/. Important difference between smallestWidth
qualifier and others is that device's smallestWidth does not change when the
screen’s orientation changes.

e Available screen width - w<N>dp

o Examples: w720dp, w1024dp.

o Define minimum available width in dp units of the screen your layout can be
run on. When the screen’s orientation changes between landscape and
portrait, the system changes corresponding value for the width. You can use
this to specify the minimum width required for the layout, instead of using both
the screen size and orientation qualifiers together.

e Available screen height - h<N>dp

o Examples: h720dp, h1024dp

o Define minimum available height in dp units of the screen your layout can be
run on. When the screen’s orientation changes between landscape and

portrait, the system changes corresponding value for the height. You can use
this to specify the minimum height required for the layout, instead of using
both the screen size and orientation qualifiers together.

Android system provides us with the basic six generalized densities. There are 2
other density characteristics, which are described in table below.

Densities Idpi Resources for low-density screens 120dpi

mdpi Resources for medium-density screens. This is 160dpi
the baseline density.

hdpi Resources for high-density screens. 240dpi
xhdpi Resources for extra-high-density screens. 320dpi
xxhdpi Resources for extra-extra-high-density screens. 480dpi
xxxhdpi | Resources for extra-extra-extra-high-density 640dpi

uses. This is used for the launcher icon only.

nodpi Resources for all densities (density-independent
resources). Not concerning current screen’s
density, the system does not scale resources
tagged with this qualifier.

tvdpi Resources for screens somewhere between mdpi | 213dpi
and hdpi. This density group is mostly considered
for televisions. If you will need to provide tvdpi
resources, you should size them at a factor of
1.33*mdpi. For example a 100 x 100px image for
mdpi screens should be 133 x 133px for tvdpi.

How did Android changed its screen adaptability
over the years?

Android’s screen adaptability went through a lot of changes throughout the years,
especially with advent of the tablets and large screen handsets. On the presentation you are
going to hear a bit more about this topic, comparison of past, present and about possible
future.

Main question

How to support multiple screens using Android?

Android system will always try to render application’s layout and bitmap drawables in
a suitable way for the ongoing screen configuration. Even though the system does most of
the work for you to render your application’s layout correctly on each screen configuration by
resizing layouts and adapting them for different screen sizes and densities, it is not always
appropriate, because your application may stretch in funny ways or some of your image files
may be blurry and so on, therefore you should try following methods to improve your
application adaptability.

| am going to demonstrate how to use following methods and make non-adaptive
application into application, which can run and look good on multiple screens.

e Declaring in the manifest which screen sizes your application supports

Using manifest declarations, you can guarantee that only users with device screen

your application support can download your application.

<supports-screens
android:smallScreens="true"
android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="true"

android:anyDensity="true" />

Example 5. <supports-screens> element declared in AndroidManifest file. Some attributes
are commented out, because | won’t need them in my examples

android:resizeable
- Defines whether your application is resizeable for different screen sizes. This
attribute is deprecated and you should not use it.
android:smallScreens
- Defines whether the application can run on smaller screens. A small screen is
defined as one with a smaller aspect ratio than the “normal” screen.
android:normalScreens
- Defines whether the application supports the “normal” screens. Normally this is a
HVGA medium density screen, but WQVGA low density and WVGA high density are
also in “normal” group.
android: largeScreens
- Indicates whether your application can be run on larger screens. A large screen is
defined as a screen that is considerably bigger than a “normal” handset screen.
android:xlargeScreens
- Define wether the application supports extra large screens. An xlarge screen is
defined as a screen that is larger that a “large” screen - for this group fall tablets (or
something bigger).
android:anyDensity
- Define whether your application is provided with resources to adjust to any screen
density.
android:requiresSmallestWidthDp

- Define smallest width required to run the application. The smallestWidth is the
smallest, shortest line on the screen (in dp units), that must be available, so your
application can be run on certain device.

android:compatibleWidthLimitDp

- Declare maximum (limit) of “smallest screen width” for device, on which your
application can be displayed. If device has greater “smallest width”, user can still
download application but he will have a option to use screen compatibility mode.

android:largestWidthLimitDp

- Specify maximum (limit) of “smallest screen width” for device, on which your
application can be displayed. If device has bigger “smallest width” user is forced to
use screen compatibility mode.

What is screen compatibility mode? If you design your application for handsets only,
it cannot be displayed on bigger screen such as tablets properly. Screen compatibility mode
is workaround for this kind of problem. There are two versions of screen compatibility mode:
one for Android 1.6-3.1, which is deprecated and we are not going to talk about it. The
second one is for version Android 3.2 and greater. In version two Android system takes
layout for normal handset (approximately 320dp x 480dp screen) and the scales it to up to fill
the screen. The system basically zooms in on your application layout to make it bigger. This
of course causes make shortcomings such as blurriness.

e Offer variety of bitmap drawables for various screen densities

Android system resizes your bitmap drawables (.png, .jpg, .gif. etc.) and renders
them in the suitable physical size on every device. That means, if you provide bitmap
drawable only for medium screen density (mdpi) which is baseline by default, the system
enlarges them when they are used on high-density screens and reduces them when used on
low-density screens. This resizing of bitmaps can cause blurriness or any other
shortcomings. To make sure your bitmaps are at their best, you must include alternative
versions of them with different resolutions for different screen densities. When your
application is run Android system ensures that the best bitmap drawable is used for current
screen.

Drawables provided in your application’s configuration qualifiers, which we already
talked about in detail, are used to match current screen the best. If the device, which use
your application has a high-density screen and your application use variety of drawables, the
system will look for a drawable resource folder, which best matches the device configuration,
in this case drawable-hdpi/.

1 main
L1 java
H TEs
[facebook.png
| graduate.png
| linkedin.png
| locked.png
twitter.png

| user.png

-1 drawable-hdpi
(27 drawable-ldpi

-1 drawable-mdpi
(27 drawable-xhdpi

- drawable-xxhdpi
(27 drawable-xxxhdpi

-1 layout

& activity_mainxml

-1 mipmap-hdpi
=1 mipmap-mdpi

-1 mipmap-xhdpi
1 miprnap-xxhdpi

1 mipmap-xxxhdpi

values
- values-wB20dp

= AndroidManifestaml

Example 6. Alternative drawable resource
directories.

For my example | added alternative
drawable file directories. Each directory has
image with the same name as in default
directory. Images are scaled according to
ratios: Idpi- 0.75, mdpi- 1, hdpi - 1.5,
xhdpi - 2, xxhdpi - 3, xxxhdpi - 4. These
ratios are the same to the wrap_content
scaling ratios.

At runtime, Android system makes sure that

the best display on the certain screen is
achieved by the following steps:

1. The system uses the appropriate
alternative resource based on the
size and density of the current
screen.

2. When there is no alternative
resource, the system will scale
default file so it fits current screen
size and density. Default files are in
“drawable/” directory. However
sometimes the system will not
always use default file provided in
“drawable/” directory, but instead
will use different alternative
resource to achieve best results.

e Use different layouts for different screen sizes
Android system tries its best to scale your application layout’s elements to fit every
screen nicely, but sometimes (let’'s be honest, every time) it is not enough. For example, for
large screens you might want to you different position or maybe different size of elements in
Ul, for smaller screen you might use smaller sizes so everything fits in.
You can use the configuration qualifiers, which we already mentioned to provide

particular layouts for each screen.

10

1 main Example 7. Multiple layout resources.

[java
Chres | have created layout for ordinary handsets
> [J drawable which is included in layout directory.

3 drawable-hdpi
1 drawable-ldpi

7 drawable-mdpi
[E1 drawable-xhdpi
[drawable-xxhdpi
1 drawable-xxxhdpi

However Ul design didn’t look good on
landscape mode so | decided to create
landscape layout for handsets as well
(layout-land directory).

O

O

B layout For bigger screens, my example layout
1 activity_mainxml didn’t look good as well thus | made
[£1 layout-land smallestWidth configuration qualifier for big
& activity_mainxml handsets and tablets. As mentioned above,
E7 layout-sw600dp screen with at least 600dp wide width is
5 activity_mainxml going to use layouts from layout-sw600dp
1 layout-swE00dp-land and layout-sw600dp-land directories.

25 activity_mainxml
[=1 mipmap-hdpi
51 mipmap-mdpi
[=1 mipmap-xhdpi
=1 mipmap-xxhdpi
[=1 mipmap-xochdpi
[2] values
[values-w820dp
’<_.§ AndroidManifest.acml

Using these simple methods we could went from this (example 8.) to this (example

9.,
™ "} e L 4l @ 3:04
main_question main_question IEIEguEesHOn
ol
ol w &
ﬂ “ 0 Erian
B

Fd>>WuIi u

n Email

L Password
‘? Pa:
oM

Example 8. On the left picture is low-density screen, middle is medium-density screen, right
is high density screen.

11

™ 4 w1017 "] %g & 10:21

] 4 e 10:19

main_question

main_question

main_question

2 a

Email 0 |Ema:‘| 0 kmail

Password [Password -

n L 4 m n m n m
2

Example 9. Left is low-density screen, middle is medium-density screen, right is high-density
screen

=¥

Password

In example 8 where | used hard coded pixel values, layouts didn’t look good on different
screens except the middle layout (medium-density), which was designed at first. However
after few simple steps we can be sure that our application is going to look great on every
screen. For more screenshots and also screenshots of tablets please see appendix.

Conclusion

What is density-independent pixel?

Density-independent pixel is a unit you should use when you want to have fixed
physical size of any kind of Ul element across multiple screen densities. Dp unit is equal to
one pixel on mdpi screen (160 dpi screen).

How to achieve density independence?
You can achieve density independence simply just by using dp or sp units,
wrap_content or fill_parent/match_parent.

Which types of screens are supported by Android system?
Using various configuration qualifiers you can support range of screen from small
screens with small densities to extra large screens with high densities.

How to support multiple screens using Android
Android system went through many changes and today using few simple methods
your application can support almost any screen. In my opinion when you follow these three
steps your application will be good to go for any screen you desire.
1. Don’t use hard coded pixel values
2. Always use dp units, wrap_content or fill_parent/match_parent when you are defining
your layout

12

3. Always use various types of drawable files for different screen densities

Today technologies provide really good adaptability for any platform - Windows, iOS,
Android or even web pages. | believe that understanding and usage of these technologies at
least in one of these platform can have huge benefit in understanding others more easily.

Reflection

When | look back on what | did and how | did it, | would surely choose different kind
of plan or method, because sticking to estimated plan which has strict number of days for
work to be completed was not really good solution for me, due to my unpredictable schedule.

| think writing this work was fun and | learnt a lot and | surely will continue increasing
my knowledge in this area.

List of references

Android Developers Guides, Screen support,
http://developer.android.com/quide/practices/screens_support.html
Main source of knowledge.

Steven Byle Understanding Density Independence in Android, December 27, 2013,
https://www.captechconsulting.com/blogs/understanding-density-independence-in-android
Used this article for deeper understanding of achieving density independence in Android.

13

http://developer.android.com/guide/practices/screens_support.html
https://www.captechconsulting.com/blogs/understanding-density-independence-in-android

